skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "N. Matni, M. Morari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. N. Matni, M. Morari (Ed.)
    In this paper, we propose a robust reinforcement learning method for a class of linear discrete-time systems to handle model mismatches that may be induced by sim-to-real gap. Under the formulation of risk-sensitive linear quadratic Gaussian control, a dual-loop policy optimization algorithm is proposed to iteratively approximate the robust and optimal controller. The convergence and robustness of the dual-loop policy optimization algorithm are rigorously analyzed. It is shown that the dual-loop policy optimization algorithm uniformly converges to the optimal solution. In addition, by invoking the concept of small-disturbance input-to-state stability, it is guaranteed that the dual-loop policy optimization algorithm still converges to a neighborhood of the optimal solution when the algorithm is subject to a sufficiently small disturbance at each step. When the system matrices are unknown, a learning-based off-policy policy optimization algorithm is proposed for the same class of linear systems with additive Gaussian noise. The numerical simulation is implemented to demonstrate the efficacy of the proposed algorithm. 
    more » « less
  2. N. Matni, M. Morari (Ed.)
    This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers. Given a neural network, we use an existing verification algorithm to construct inclusion functions for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system. This embedding provides a scalable approach for safety analysis of the neural control loop while preserving the nonlinear structure of the system. We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system. We design an algorithm to leverage this computational advantage through partitioning strategies, improving our reachable set estimates while balancing its runtime with tunable parameters. We demonstrate the performance of this algorithm through two case studies. First, we demonstrate this method’s strength in complex nonlinear environments. Then, we show that our approach matches the performance of the state-of-the art verification algorithm for linear discretized systems. 
    more » « less